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Confinem'ent of ion clouds in multipole traps is studied, with an accent on ion

stability which is shown to be phase and position dependent. Ion dynamic is studied

by means of the numerical integration of the equations of motion. The trajectories

envelope and the phase-dependence of ion location in the quadrupole and sextupole

rf traps are studied.

l.INTRODUCTION

In many spectroscopic applications tl-111 it is desired to use radiofre-

quency (RF) traps which can trap large numbers of particles with decreasing en-

ergies. Higher order electromagnetic traps enable storing an increased number of

low energy particles, compared to the Paul trap. This paper deals with the dy-

namics of particle trapped in a RF quadrupole and sextupole rf traps.

A comparative study between the dynamics of a charged particle in a quad-

rupole Paul trap and in a sextupole trap respectively, is presented. The frontiers

of the domains covered by the trajectories are described using a fourth order

Runge-Kutta method. Within the frame of the pseudopotential approximation,

the system has been described both classically and semiclassically.

The paper is organized as follows: Section 2 deals with the equations of

motion describing the ion motion in electromagnetic traps. The next section fo-

cuses on electrodes'shape calculation for rf traps. Numerical integration of the

equations of motion allowed us to represent ion trajectories iit Section 4. Finally,

some concluding remarks are drawn.

2. MULTIPOLE ELECTROMAGNETIC TRAPS

The classical Hamiltonian of an ion of electric charge Q and mass M,

trapped by an electromagnetic field of electric potential @ and constant magnetic

induction E, can be expressed as
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o =hlp-+eE,, ) '  *ea(r,) ,  (r)

where V -(*,y,2) and p=(p-,py,pz) stanO forthe part icle posit ion and im-

pulse vectors respectively. If E = 0, then for the ion stability it is required that

the electric potential E = 0 to be time dependent. In the case of RF traps we
choose o( / , t )=A(t ) f  (7) ,where A is  a funct ion of  T -2n/c2 per iod.  cus-

tomarily, the temporal term is chosen e(t)=(Jo+ Vo cosQr, with Us and Ve rep-

resenting the dc and ac trapping voltage amplitudes, respectively, applied on the
trap electrodes. The equations of motion for the particle are .described by

M i  = O ( E + r x E ) ,  e )
where E = -VO stand for the electric fietd within the trap. Generally, these
equations describe a nonlinear and non-autonomous system of differential equa-
tions. Analytic solution of this system exists only in a few particular cases. The
numerical integration of this system reveals that the single-particle motion may
exhibit chaotic dynamics in multipole RF traps, but not in the Paul trap. Hence,
the multipole traps and their electromagnetic fields are studied concerning the
stability regions for the particle motion as well as their phase portraits.

In case of axial symmetry, the Laplace equation solution may be expressed as

f  (v)=, j  CnrnPn(cos0), (3)

where r -lVl and 0 = arccos (zlr), while P,, are the Legendre polynomials. The

term colresponding to n = 2 in eq. (3) describes some ideal quadrupole traps: the

Paul trap (E =0), where the confined particle behaves as a parametric harmonic
oscillator and the Penning trap ( Vo = 0 ), case when the particle is described by
an autonomous harmonic oscillator Hamiltonian. If Vo*O and C,, *0 for in-
dexes n > 2, the ion motion is described by a nonlinear and non-autonomous dy-
namic system. Using the pseudopotential method we may introduce the effective
potential

o,r(r)=uaf(r)+-%[vre)] ' .  @)\  /  
4 M { ' Z  

L  J  \  l J

An important problem of trap geometry optimization consists in the deter-
mination of the electrode shape, so that the quadrupole term in the expressions of
the electric potential @ and of the Q"p to be dominant in an extended neighbor-
hood of the trap center. In case of axial symmetry
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o (/, t) - a(r)g (p, .), s (p, z) = i D,H n(p, .),
tt=0

o* (i) =uos(0,.; .ffi[(*)' .(#)'],

(s)

(6)

where p - ,17* y' and the spherical harmonic s Hris a polynomial in p and e
which can be expressed using a homogeneous polynomial of order n satisfying
the Laplace equation. The equations of motion can be expressed in cylindrical
coordinates as

p=-##.h-a1p,

pzo = -zppo-o,pp -##,

where t is the angular moment on the z axis given by

L, = up'o+la,upz,, 0, = #
The equations of motion are concretely determined by

ficients in the multipole expansion (5).

3. MULTIPOLE RF TRAPS AND ELECTRODE SHAPE

In spherical coordinates the ideal potential function of a}n-pole is given by

: r -  Q d O
" - -  M E ' (7)

(8)

(e)

fixing the D" coef-

There are different ways to choose the constant A in (10). For reasons
which will become obvious, A was chosen such as the potential function be zero
in the rrap cenr.", 

'O{0, 
.o ) 

= e012, and O (0, -.0 
) 

= (-1)" eo /2. Thus, in
cylindrical coordinates, a simple calculus gives the potential functions for the
quadrupole trap as

o (P, z) = too (zr' - Oz)t +2fi,

for the sextupole and octupole traps we infer

@ (P, z)= <oo (rr' -3P')rl 42fi,
and

.D (p, e) = <po (s.o - z4z2p2 + 3p4 )ttszfi,

( l0)

( 1 1 )

(t2)

(  13)



where zs stands for the closest distance between 
"nO.up 

and the trap center on
the z axis. As for a Paul trap, the electrode shape for a multipole trap results by
solving the equations O(p,.) =loo12. This choice in not unique [], l2]. For
the quadrupole and octupole traps, the electrodes profile can be inferred by
solving the equations @(p,.) - cr@o and @(p,.) - -0@0, with and c+g = 1.
In case of the sextupole trap, the condition for the electrode surface to be sym-
metrical in respect to the z=0 plane has to be explicitly imposed which results
in the unique option cr = F =112.

Besides the electrodes which intersect the e axis in z=lzo (endcaps), a
2n'pole trap has (n - l) ring electrode$ For instance, the electrodes shape for
octupole trap is given by tSzf =824 -2422p2 +3p4. A simplified design of a

lap approximating the octupole potential function (13) is represented in Fig. l.
The closest distance between the middle ring to the z axis is given by

Po = za{1813, while for the two lateral rings the corresponding distance is

,in = zs+|ffi. Since a dc voltage applied together with the driving voltage
proved to deteriorate the trap stability in multipole traps, the usual choice of Os
is Os = Vo cos(gt).

z Fie. l. - Electrode strucnre of the
" 0 RF ocrupole trap.

4.ION DYNAMICS IN QUADRUPOLD AND SEXTUFOLE TR,APS

In an electromagnetic trap with rotational symmetry, the first anharmonic
term of the electric potential multipole expansion is expressed by means of a
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third rank polynomial in coordinates. The equations of motion for an electrically
charged particle in a third order electromagnetic trap are nonlinear, opposed to the
ideal quadrupole Paul trap for which the Mathieu equations of motion are linear.

In the following, a comparative study between the dynamics of a charged
particle in a quadrupole Paul trap and a third order electromagnetic trap respec-
tively, is presented, together with the description of the frontier of the domain
covered by the trajectories. The nonlinear differential equations with time peri-
odical coefficients which describe the particle dynamics within the trap volume
are integrated using the fourth order Runge-Kutta method.

The electric potential for the third order trap can be expressed in cylindrical
coordinates as

o(p, d=H(zz3 -zpzz). ( 14)

The four surfaces of the electrodes of a third order trap (two rings in this
case, and two endcaps) are described by O(p,z)=t@o /2.The inner distance
between endcaps 2zg and the inner radius of the two rings rs specifies the trap
dimensions. These lengths are related by ro - Qlizs = l.IZzs.

For the third order trap, the following nonlinear differential equation sys-
tem is obtained:

i = klp' -2r'1,

L  - 3 8 Q a
, t  - - - . . : .

4Mzd

o-Zkpz.(#)'i,

u=(h)#'
In order to compare the dynamics of an electrically charged particle in the

third order trap and in the quadrupole Paul trap, we chose L, = 0,
Oo = Uo+ V6 cosf)/, Vo = 750 V, U0 = 0, Q/2n= 500 kHz. The charged par-
ticle is the simple ionized l37Ba+ ion. The trap parameters in our example are
ro =|J.5 mm and zo =12.4 mm. For the ideal Paul trap, these conditions corre-
spond to ar-A, and qr=0.699, namely parameter values within the stability
diagram of the Mathieu equations. The initial conditions have been chosen so as
the kinetic energy vanishes and x = 3 mm, z = 1 mm. The equations of motion
have been integrated on a time interval equal with 128I, with a constant step
T 1128, where Z is the radiofrequency field period. The electric field phase has
been defined as 2t - Znt lT. For the sextupole trap, the ac. voltage was
t'o = 1500 V.

Using a simple sort procedure, the ion trajectories envelope was inferred
from a collection of ion positions. The ion positions for the kinetic energy extreme
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Fig. 2. - The ion positions at
maximum kinetic energy Tr*
uld 

F. trajectories envelope
for the quadrupole RF trap.

Fig. 3. - The ion positions
at minimum kinetic energy
T,n and the traiectoriis
envelope for the quadrupole

RF trap.
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Fig. 4. - The ion positions
at maximum kinetic energy
7,,^ and the t aiectorils
envelope for the sextupole

RF trap.
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Fig. 5. - The ion positions
at minimum kinetic 7,,i,
energy and the trajectories
envelope for the sextupole

RF trap.
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values for a given phase 2r werc also collected. In case of the quadrupole trap,
ion position at maximum and minimum kinetic energy is shown in Fig. 2 and
Fig. 3, respectively. The rectangle without corners represents the trajectories en-
velope.

Fig. 4 and Fig. 5 show the corresponding graphs for the sextupole trap in
the first quadrant of the }l = 0 plane.

'. CONCLUSIONS

In order to optimize the multipole contributions to the stability domains of
the electromagnetic traps, we introduced the classical Hamiltonian for an ion
moving in the field of a multipole trap with periodical potential and we studied
the nonlinear differential system of motion equations. The control parameters for
the Hamiltorrian of this dynamic system are function of the trap geometrical pa-
rameters and of the multipolar coupling constants. Within the frame of the geo-
metrical control theory, the structural stability of the considered dynamic system
has been investigated. The multipole expansion potentials have been considered
as Morse functions, for which the harmonic approximation can be achieved, or
as a function with degenerate critical points classified according to the catastro-
phe theory. The system we considered has also been characterized by means of
an autonomous Hamiltonian, associated through the pseudopotential method,
introducing an effective potential.

The frontiers of the stability domains and the periodical solutions of the
sextupole trap have been analytically determined without using the pseudopo-
tential approximation. We remark that a study over the stability of this nonlinear
and non-autonomous dynamic system has not been performed yet in the litera-
rure. The kinetic energy decreases and the spatial extent of the ion clouds is
larger compared to the corresponding quadrupole Paul trap. We have numeri-

1 . 0

* o.u

0 .0
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cally integrated (based on the Runge-Kutta method) the nonlinear differential

equations *ittt the time periodical coefficients which characterize the dynamics

of a trapped particle confined in a third order (sextupole) trap,. These domains are

larger tilun i" the case of an ideal quadrupole Paul trap, which allows trapping of

larger particle numbers.
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